Gravity matters

John Barrett's research website

Matrix Quantum Gravity

leave a comment »

The idea behind the project outlined in my Como lectures is to model a space-time geometry with a (finite-dimensional) matrix. Then quantum geometry (or random geometry) can be modelled by a suitable integral over the space of matrices, which is again a finite-dimensional integral, and thus well-defined.

In general terms, integrating over a space of matrices has been studied a lot, and goes by the name of a “matrix model”. However, in this case the matrix variable is a very specific type of matrix, namely a Dirac operator. The Dirac operator satisfies a number of algebraic conditions, so my new quantum gravity can be thought of as a matrix model for a very specific type of matrices.

The point of using Dirac operators is that a Dirac operator specifies a geometry. In the classical case, the Dirac operator is a differential operator on a manifold and one can extract the metric tensor from it. In the case of a matrix, the number of spinor “modes” that the Dirac operator operates on is finite, so that there is a maximum energy. Physically, if there are matrix quantum geometry models that behave like quantum gravity, this maximum energy should be identified as the Planck scale. So the mysterious Planck-scale cutoff that is needed to make sense of quantum field theory is built in to the model in a fundamental way. Whether there really are viable matrix quantum gravity models is very much an open question, and the point of The Project is to try to answer this.

To define a matrix Dirac operator in a consistent way, the notion of geometry is generalised to “non-commutative geometry”. In this setting, a lot of geometric constructions still make sense. One hopes, for example, that there is a suitable notion of the limiting case of large matrices in which a sequence of matrix Dirac operators converges to one of the usual Dirac differential operators (“taking the Planck scale to infinity”). More loosely, one can understand constructions in non-commutative geometry as the algebraic analogues of familiar constructions in ordinary metric geometry on a manifold. So it is important to have all of the machinery of non-commutative geometry (technically, the Dirac operator is part of a “real spectral triple”).

The basic set-up for matrix geometries is explained in my paper “matrix geometries and fuzzy spaces as spectral triples”. The paper contains the general definitions and a lot of useful data, such as operations on gamma matrices and explicit forms for the Dirac operator. I’m hoping it will be a resource for future efforts at modelling quantum geometry.


Written by johnwbarrett

8 April 2015 at 08:25

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: